

1

2
University of Florida, EEL 4744 - File 15b
© Dr. Eric M. Schwartz

3

EEL 4744

A/D EEG Example

- 5 V is too much for the XMEGA
$>$ Use differential input and gain of $1 / 2$
- $f_{S}=125 \mathrm{~Hz}, T_{S}=1 / 125=0.008 \mathrm{~s}=8 \mathrm{~ms}$
$>$ I.e., collect a sample every 8 ms
$>$ Use a timer to generate an interrupt every 8 ms
- Pick any single-sided un-signed analog input (depending on gain stage)
- Single channel
- Single Scan
> You might want to assume noisy data, so instead of single scans, take 4 "quick" samples and then store the average
> "Quick" must mean MUCH quicker than the sampling rate, e.g., 0.08 ms

4
University of Florida, EEL 4744 - File 15b
© Dr. Eric M. Schwartz

5

EEL 4744
XMEGA ADC Features

- 12-bit resolution
- Up to 2Msamples/sec

See doc8331,
Section 28.1
> 2 inputs sampled simultaneously
>4 inputs sampled within $1.5 \mu \mathrm{~s}$ (667 kHz)

- Differential or single-ended input
$>$ Differential inputs with or without gain
- Gains: $1 / 2 \times, 1 \times, 2 \times, 4 \times, 8 \times, 16 \times, 32 x, 64 \times$
- Single scan or continuous scans
- Signed or unsigned results
- Internal and external reference options
- Optional event triggered conversion
- Four conversion channels with individual input control and result register
> Enable four parallel configurations and results
man
6

8
University of Florida, EEL 4744 - File 15b
(C) Dr. Eric M. Schwartz

9

10

EEL 4744 XMEGA 12-bit or 8bit Conversion

- ADC can be configure to generate either an 8-bit or a 12-bit result
>8-bit results are available faster (as expected)
- Result registers are 16 bits wide (i.e., two 8-bit registers)
$>$ Data can be stored as right adjusted 16-bit values
- Right adjusted means the 8 least-significant bits (lsb) are put in the low byte
- Left adjusted means the 8 most-significant bits (msb) are put in the high byte $>$ A 12-bit result can be either left or right adjusted
- When in signed mode, the msb represent the sign bit
$>$ The sign bit is sign-extend
- For 12-bit right adjusted, bit 11 is repeated for bits 15-12
- For 8-bit right adjusted, bit 7 is repeated for bits 15-8
- One 12-bit compare register
$>$ Four Analog Comparators
- Each of four ADC channels can be set for an interrupt when result is above or below the threshold
$>$ Analog comparator output available on pin
See doc8331,
>Flexible input selection
- All pins on the port
- Output from the DAC
- A 64-level programmable voltage scaler of the internal VCC voltage
> Interrupt and event generation on:
- Rising edge, falling edge, toggle

See doc8385, Section 31
$>$ Window function interrupt and event generation on:

- Signal above window, signal inside window, signal below window
University of Florida, EEL 4744-File 15b
ODr. Eric M. Schwartz

14
University of Florida, EEL 4744 - File 15b
© Dr. Eric M. Schwartz

EEL 4744

See doc8331, Section 28.8

XMEGA Analog: Starting a Conversion

- Starting a conversion
$>$ Write to the start conversion bit for one or more channels
> Use the event system to start one or several conversions
> If multiple start conversion bits are written (in ADC_CTRLA's CHSTART[3:0]), the scan starts from the lowest channel \# first
- Each of four channels can be started with this

Ex: To start conversions of channels 2 and 0 (0 first)

$$
\text { ADC_CTRLA }=\text { ADC_CH2START_bm } \mid \text { ADC_CHOSTART_bm }
$$ ADC_ENABLE_bm;

$>$ But each channel also has its on CTRL register which has a START bit

- See ADCn_CHx_CTRL, where n is A or B and $\mathrm{x}=0,1,2$, or 3) Ex" ACDA_CH1_CTRL = ADC_CH_START_bm $\mid \ldots$;
> 28.8.1 Input Source Scan:
- For ADC Channel 0 it is possible to select a range of consecutive input sources that is automatically scanned and measured when a conversion is started

16
University of Florida, EEL 4744 - File 15b
© Dr. Eric M. Schwartz

17

EEL 4744
ADC Timing: Single Conversion, 2 Channels

- The pipelined design enables the second conversion to start on the next ADC clock cycle after the first conversion has started.
- Both conversions take place at the same time, but the conversion on ADC channel 1 (CH 1) does not start until the ADC samples and performs conversion on the msb on channel $0(\mathrm{CH} 0)$

18
University of Florida, EEL 4744 - File 15b
(C) Dr. Eric M. Schwartz

19

20
University of Florida, EEL 4744 - File 15b
(C) Dr. Eric M. Schwartz

21

22
University of Florida, EEL 4744 - File 15b
© Dr. Eric M. Schwartz

23

24
University of Florida, EEL 4744 - File 15b
(C) Dr. Eric M. Schwartz

25

26
University of Florida, EEL 4744 - File 15b
© Dr. Eric M. Schwartz

27

28
University of Florida, EEL 4744 - File 15b
© Dr. Eric M. Schwartz

29

30
University of Florida, EEL 4744 - File 15b
© Dr. Eric M. Schwartz

31

- 12-bit Mode, Left Adjusted
$>$ RES[11:4]: Channel Result High
- These are the eight MSBs of the 12-bit ADC result
- 12-bit Mode, Right Adjusted
> RES[11:8]: Channel Result High
- These are the four MSBs of the 12-bit ADC result
- 8-bit Mode

ADCn_CHx_RES, $x=0,1,2,3, n=A, B$
$>$ These bits will be the extension of the sign bit, CHRES7, when the ADC works in signed mode, and set to zero when the ADC works in single-ended mode

	Bit	7	6	5	4	3	2	1	0
12-bit, left.	+0x05	RES[11:4]							
12-bit, right		-	-	-	-	RES[11:8]			
8 -bit		-	-	-	-	-	-	-	-
	Read/Write	R	R	R	R	R	R	R	R
	Initial Value	0	0	0	0	0	0	0	0

32
University of Florida, EEL 4744 - File 15b
© Dr. Eric M. Schwartz

33

34
University of Florida, EEL 4744 - File 15b
(C) Dr. Eric M. Schwartz

35
 and complexity, has built in pre-amplifiers on ADC (port A) inputs AD0-7. The pre-amplifiers essentially remap the range of the XMEGA's ADC from 0 to 2.0625 V to a more flexible 0 to 5 V . The pre-amplifiers are designed to work with the internal ADC voltage reference (VREF) of VCC/1.6V (2.0625V when $\mathrm{VCC}=3.3 \mathrm{~V}$).'

- "It should be noted that even though the pre-amplifier circuit increases functionality, it also is another source for analog conversion error. For details, consult the included sensitivity analysis of the analog pre-amplifiers."
- If put 5 V on top, get 2.0625 V at center tap.

$V R E F=\frac{V C C}{1.6}=\frac{3.3}{1.6}=2.0625 \mathrm{~V} \quad \frac{5 \mathrm{~V} * 3.3 \mathrm{k}}{4.7 \mathrm{k}+3.3 \mathrm{k}}=2.0625 \mathrm{~V}$
36
University of Florida, EEL 4744 - File 15b
(C) Dr. Eric M. Schwartz

37

38
University of Florida, EEL 4744 - File 15b
© Dr. Eric M. Schwartz

EEL 4744

XMEGA and Sign

- In signed mode, you can interpret negative values, but ... you can NOT supply voltages lower than the XMEGA's ground.
$>$ But consider measuring something with a multimeter at 3.7 V; now flip the leads and see that it now measures -3.7 V.
$>$ In differential mode, both voltages must be above the XMEGA's ground, but the differential voltage can be positive or negative.
- You will use this for the CdS cell in your Lab 7.
- Look at the Analog Backpack schematic (next page) to see both CDS + and CDS- are above ground (GND).
University of Florida, EEL 4744 - File 15b
ODr. Eric M. Schwarz

40
University of Florida, EEL 4744 - File 15b
(C) Dr. Eric M. Schwartz

41

EEL 4744 ADC Register Suggestions For Our Lab

- Enable ADC: ADCA_CTRLA
- The ADC takes up to 24 ADC clocks cycles before it is ready to be used
- Set reference: ADCA_REFCTRL
> You need to use the value that will make VREF=External AREF pin on PORTB
- Set sample time: ADCA_PRESCALER
> Al Gore suggests using DIV512
- Set mode (unsigned or signed; single scan or free running) ADCA_CTRLB
- Set ADC pin for input: PORTA_DIR
- Start the scan: ADCA_CH0_CTRL
- Wait for result (or use interrupts): ADCA_CH0_INTFLAGS
- Get Result: ADCA_CH0_RES
$>$ This might be two bytes to deal with, depending on the number of bits and rightor left-adjusted

EEL 4744 A/D Definitions

- Analog: Continuous in time and voltage
- Digital: Discrete in time (sampling) and voltage (a fixed set of possible values, e.g., if 3 bits, then $2^{3}=8$ possible values)
- Span: Range of possible analog voltages
$>$ Span is also know as the full-scale range (FSR)
$>$ Span $=\mathrm{V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{L}}$
$>$ If $\mathrm{V}_{\mathrm{H}}=5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{L}}=0 \mathrm{~V}$, Span $=5 \mathrm{~V}$
- Resolution (Δ):
$>\Delta$ usually is specified as the number of bits, but I'll use a different definition below and in the subsequent examples
- Let's define Δ as the smallest change in an input that will produce a change in the output
$\Delta=\operatorname{Span} / 2^{\mathrm{n}}=\mathrm{FSR} / 2^{\mathrm{n}}$, where n is the number of bits
- If 2.37 V to 2.38 V is the smallest change allowed, $\Delta=0.01 \mathrm{~V}$
- If $\mathrm{V}_{\mathrm{H}}=5 \mathrm{~V} \& \mathrm{~V}_{\mathrm{L}}=0$, and $\mathrm{n}=8$, then $\Delta=5 \mathrm{~V} / 2^{8}=19.5 \mathrm{mV}$
- If $\mathrm{n}=16, \Delta=5 \mathrm{~V} / 2^{16}=76.2 \mu \mathrm{~V}$

EEL 4744

A/D Definitions

- Dynamic Range:

>D.R. $=$ Largest Voltage / Smallest Voltage
$>$ D.R. $=\mathrm{V}_{\max } / \mathrm{V}_{\text {min-measurable }}$, often measured in dB $-\mathrm{V}_{\text {min-measuruable }}=\Delta$
$>$ For noise in a system, replace Δ with $V_{\text {noise }}$
$>$ D.R. $_{\mathrm{dB}}=20 \log \left(\mathrm{~V}_{\text {max }} / \mathrm{V}_{\text {min-meas }}\right)=20 \log \left(\mathrm{~V}_{\text {max }} / \Delta\right)$
$>$ D.R. $._{d B}=20 \log \left(\mathrm{~V}_{\max } /\left[\right.\right.$ Span / $\left.\left.2^{\mathrm{n}}\right]\right)$
$>$ If $\mathrm{V}_{\text {min }}=0$, then D.R. ${ }_{\mathrm{dB}}=20 \log \left(\mathrm{~V}_{\max } /\left[\mathrm{V}_{\max } / 2^{\mathrm{n}}\right]\right) \Rightarrow$
D.R. ${ }_{\mathrm{dB}}=20 \log \left(2^{\mathrm{n}}\right)=\mathrm{n} \times 20 \log (2) \approx 6 \times \mathrm{ndB}$
$>$ Example: Given 8 -bit A/D, range of 0 V to 5 V

- Span $=\mathrm{V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{L}}=5-0=5 \mathrm{~V}$
$-\Delta=$ Span $/ 2^{\mathrm{n}}=5 \mathrm{~V} / 2^{8}=19.5 \mathrm{mV}$
$-\mathrm{D} . \mathrm{R}_{\mathrm{dB}}=20 \log \left(\mathrm{~V}_{\max } / \Delta\right)=20 \log (5 \mathrm{~V} / 19.5 \mathrm{mV})=48.2 \mathrm{~dB}$
- D.R. ${ }_{d B} \approx 6 \mathrm{ndB}=6 * 8 \mathrm{~dB}=48 \mathrm{~dB}$

44

EEL 4744

Sampling Rates

- Telephone (narrowband): $8 \mathbf{k H z}(300 \mathrm{~Hz} \rightarrow 3.4 \mathrm{kHz})$ $>$ Wideband telephone, VoIP: $16 \mathrm{kHz}(50 \mathrm{~Hz} \rightarrow 7 \mathrm{kHz}$ or $\uparrow)$
- Original MPEG Audio: 8, 11.025 or 12 kHz
- MPEG-1 Audio : 32, 44.1, or 48 kHz
- Audio CDs \& MP3 sample at 44.1 kHz (and uses 16-bits)
- Profession audio sampling rate using tape recorders, video servers, etc: 48 kHz
- First commercial digital audio recorders (1970s): 50 kHz
- Pro recording equipment for making CDs: 88.2 kHz
- DVD-audio, Blue-ray disk audio, HD DVD audio: 96kHz
- Recording equipment for DVD-audio, Blue-ray disk audio, HD DVD audio: 192 kHz
- Noise kills dynamic range

University of Florida, EEL 4744-File 15b
ODr. Eric M. Schwartz Dr bew scous

Beatles analog audio remastered (converted to digital) at $192 \mathrm{kHz}, 24$-bit

46

EEL 4744

Dynamic Range Examples

- Dynamic Ranges for various systems
>8-track tapes: 50 dB
>Dolby B: 62 dB
>Dolby C: 72 dB
>Dolby TrueHD: 24-bit, $96 \mathrm{kHz}, 144 \mathrm{~dB}$
>CDs (16-bit): 96 dB (theoretical)
$>$ Digital Audio (16-bit): 96 dB (theoretical) - Observed 16-bit digital audio: 90 dB
>Digital Audio (20-bit): 120 dB (theoretical)
>Digital Audio (24-bit): 144 dB (theoretical)

University of Florida, EEL 4744-File 15b
© Dr. Eric M. Schwartz
Dr. Eric M. Schwartz
47

EEL 4744

Quantization in 2 bits

- Suppose you have a 2-bit A/D Converter
$>$ For various analog inputs, what is the digital output?
$>$ There are 4 bit patterns possible, mainly $\{00,01,10,11\}$:
-00 is the bit pattern for $\mathrm{V}_{\mathrm{RL}}\left\{0 \leq \mathrm{V}_{\%}<\mathbf{0 . 2 5 \}}\right.$
$-\mathrm{V}_{\mathrm{RL}}$ is the low voltage reference
- 01 for 25% or $1 / 4$ of $\left(\mathrm{V}_{\mathrm{RH}}-\mathrm{V}_{\mathrm{RL}}\right)\left\{0.25 \leq \mathrm{V}_{\%}<\mathbf{0 . 5 0 \}}\right.$
- 10 for 50% or $1 / 2$ of $\left(\mathrm{V}_{\mathrm{RH}}-\mathrm{V}_{\mathrm{RL}}\right)\left\{0.50 \leq \mathrm{V}_{\%}<0.75\right\}$
- $\mathbf{1 1}$ for 75% or $3 / 4$ of $\left(\mathrm{V}_{\mathrm{RH}}-\mathrm{V}_{\mathrm{RL}}\right)\left\{\mathbf{0 . 7 5} \leq \mathrm{V}_{\%}<\mathbf{1 . 0 0}\right\}$
$>$ Let $\mathrm{V}_{\mathrm{RH}}=5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{RL}}=0 \mathrm{~V}$; if our unknown voltage is:
$-\mathrm{V}_{\mathrm{x}}=2.00 \mathrm{~V}$, then answer will be 01 for $\mathrm{V}_{8}=2.00 / 5$ or 40% of V_{RH}
$-\mathrm{V}_{\mathrm{x}}=1.25 \mathrm{~V}$, then answer will be 01 for $\mathrm{V}_{\%}=1.25 / 5$ or 25% of V_{RH}
- $\mathrm{Vx}=4.00 \mathrm{~V}$, then answer will be 11 for $\mathrm{V}_{\%}=4.00 / 5$ or 80% of V_{RH}

University of Florida, EEL 4744-File 15b
ODr. Eric M. Schwartz
48
University of Florida, EEL 4744 - File 15b
© Dr. Eric M. Schwartz

EEL 4744

Quantization in 8 bits

- What if your A / D Converter is $\mathbf{8}$-bits
$>$ There are $2^{8}=256$ bit patterns possible, $\{00000000,00000001, \ldots, 11111110,11111111\}$
$>$ Thus, 00000000 is the bit pattern for V_{RL} $\left\{0 \leq \mathrm{V}_{\%}<0.00390625=1 / 256\right\}$
>00000001 for 0.390625% or $1 / 256$ of $\left(\mathrm{V}_{\mathrm{RH}^{-}}-\mathrm{V}_{\mathrm{RL}}\right)$
>11111111 for 99.609375% or $255 / 256$ of $\left(\mathrm{V}_{\mathrm{RH}}-\mathrm{V}_{\mathrm{RL}}\right)$
$>$ Etc.

49

EEL 4744

Checking Your A/D

- If your A/D Converter yields 8 bits
> And there are 256 bit patterns possible, mainly $\{00000000,00000001, \ldots, 11111110,11111111\}$ Thus, -00000000 is the bit pattern for $\mathrm{V}_{\mathrm{RL}}\left\{0 \leq \mathrm{V}_{\%}<\mathbf{0 . 0 0 3 9 0 6 2 5 \}}\right.$
-11111111 for 99.609375% or $255 / 256$ of $\left(V_{R H}-V_{R L}\right)$
-01001100 for 29.6875% or $76 / 256$ of $\left(V_{R H}-V_{R L}\right)$
$>$ Then if you connect a "C" battery (with normal voltage of 1.5 V) to, an ADC pin with $\mathrm{V}_{\mathrm{RH}}=5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{RL}}=0 \mathrm{~V}$, then the A/D should yield $\$ 4 \mathrm{C}=76_{10}=\% 01001100$
$>$ If you get $\$ 46$ you are probably satisfied ...
$>$ If you get $\$ 35$, your battery is probably dead.. .
$>$ But if you get larger than say $\$ 50$, for example, $\$ \mathrm{DE}$, then something is VERY wrong!!! How can a "C" battery >> 1.5 V ?
University of Florida, EEL 4744 - File 15b
ODr. Eric M. Schwartz
50

51
51

52
University of Florida, EEL 4744 - File 15b
© Dr. Eric M. Schwartz

53

54
University of Florida, EEL 4744 - File 15b
© Dr. Eric M. Schwartz

55

56
University of Florida, EEL 4744 - File 15b
(C) Dr. Eric M. Schwartz

57

58
University of Florida, EEL 4744 - File 15b
(C) Dr. Eric M. Schwartz

